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Abstract
In this paper we propose a method to perform tunable spectral sensing using globally inhibitory
coupled oscillators. The suggested system may operate in the analog radio frequency (RF)
domain without high speed ADC and heavy digital signal processing. Oscillator arrays may be
made of imprecise elements such as nanoresonators. Provided there is a proper coupling, the
system dynamics can be made stable despite the imprecision of the components. Global
coupling could be implemented using a common load and controlled by digital means to tune
the bandwidth. This method may be used for spectral sensing in cognitive radio terminals.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Development of high data rate communication systems
requires implementation of complicated algorithms operating
at high speed with low power consumption. Despite the
progress in digital CMOS technology, high data rate digital
processing poses a number of problems both for signal
digitizing and its processing. These problems motivate a
search for new architectures capable of combining advances
in scaling, new materials and information processing at the
nanoscale. Currently there is growing interest in development
of signal processing systems using nanoscale devices such
as molecular electronics, nanowires, nanomechanical systems,
etc [1–10]. For example, scaling MEMS to the nanoscale gave
rise to low power nano-electromechanical systems (NEMS)
with operational frequencies above the GHz (frequency range
typical for modern communication systems) [6, 7].

Recent advances in nanotechnology and scaling allow us
to build systems with a large number of nanoresonators (such
as CNT-based NEMS [9]) integrated within a CMOS chip.
On the other hand, scaling poses a problem to maintain the
accuracy of the elements.

A practical way to cope with inaccuracy may be seen in
building hybrid systems combining low precision analog/nano-
components with digital calibration/control. Besides, in
network structures one may use a proper coupling such that the

system dynamics may be made stable despite the imprecision
of components [11]. In particular, collective behavior of
coupled NEMS networks with the assistance of coupling
and calibration provided by digital CMOS may allow us to
implement low power information processing algorithms in the
analog domain with digital calibration/control. For example,
it makes feasible spectral processing in the RF domain
which is of special importance for high data rate wireless
communications systems. The suggested method may be used
for spectral sensing in cognitive radio terminals [12, 13], where
wide radio spectrum bands are to be repeatedly scanned in real-
time with low power consumption.

This paper is organized as follows. Section 2 provides
a background on coupled oscillators. The proposed method
of spectral sensing based on inhibitory globally coupled
arrays and its possible NEMS implementation are outlined in
section 3 and section 4, respectively; conclusions follow in
section 5.

2. Coupled oscillators

2.1. Background

Coupled oscillators have been under intensive studies in
different fields of science for decades (e.g. see [11, 14–16]).
In this section we introduce a notation and outline the basic
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concepts used in the following. We consider weak coupling
among oscillators (active rotators) such that they maintain their
limit-cycle trajectories perturbed by coupling. It allows us
to ignore the coupling effect on an oscillator’s amplitude and
describe the system only with phase relationships such as

dθn

dt
= ωn + Qn(θ1, θ2, . . . , θN ); n = 1, . . . , N (1)

where ωn is the partial (uncoupled) frequency of the nth
oscillator and Qn presents a coupling effect on phase θn from
all other oscillators and is described as 2π -periodic in each of
its arguments. We present coupling as an interaction among all
pairs of oscillators, Qn(θ1, θ2, . . . , θN ) = ∑N

m=1 qnm(θm, θn).
In the case of weak coupling qnm(θm, θn) = qnm(θm − θn) and
qnm(0) = 0, i.e. there are no interactions if identical oscillators
are in phase. Such coupling is known as diffusive coupling and
is described as

dθn

dt
= ωn +

N∑

m=1

qnm(θm − θn). (2)

A special case of (2), qnm(θ) = (k/N) sin(θ), corresponds
to uniform all-to-all coupling with strength k among N
oscillators and is known as the global phase-coupled Kuramoto
model [14] [15]:

dθn

dt
= ωn + k

N

N∑

m=1

sin(θm − θn); n = 1, . . . , N. (3)

Global coupling may be seen as the complex mean field R(t)
acting on a selected oscillator. Then (3) may be rewritten as

dθn

dt
= ωn + kr sin(ψ − θn) (4)

where the mean field is defined by

R(t) = r(t)eiψ(t) = 1

N

N∑

n=1

eiθn(t); (5)

where r and ψ are the mean-field amplitude and phase,
respectively. Depending on k, coupling may be attractive
(k > 0) or repulsive (k < 0).

2.2. Oscillators with attractive global coupling

Attractive coupling is observed in many natural phenomena
and is the topic for extensive studies. For example, it is
shown that oscillator arrays with different partial frequencies
may be driven into a collective behavior without external force
provided that positive coupling strength k is large enough
compared to frequency variations σω [14, 15]. Then the
system evolves from quasi-chaotic to partial synchronization,
where oscillators with close frequencies are frequency-locked,
resulting in a growing mean field which in turn attracts further
staying apart (in frequency) oscillators into the frequency
lock. If identical oscillators are all in phase-sync, it results
in maximum mean-field amplitude (r = 1), while the mean
field formed by oscillators with random phases approaches

Figure 1. Distribution of frequencies in oscillator array, variance
σ 2
ω = 0.02, N = 50.

zero (r → 0). For this reason the mean-field amplitude r is
also referred to as the order factor.

In practice the oscillators’ frequencies are not identical,
resulting in complicated dynamics. In the following we
consider Gaussian frequency distribution g(ω) with zero mean
and variance σ 2

ω; an example of the frequency distribution for
N = 50 and σ 2

ω = 0.02 used in simulations below is shown
in figure 1. Note that oscillators with partial frequencies |ωn −
ω0| > kr cannot be attracted to the frequency lock; it results
in partial frequency synchronization and the lower steady state
order factor r < 1. Furthermore, even if all oscillators with
different frequencies are synchronized, it results at best in
phase-mode locking (constant phase difference), but not in
phase synchronization (where the phase difference is zero).
Phase-mode locking among oscillators results in a fluctuating
order factor with variance proportional to N−1.

The effect of frequency synchronization in a globally
attractively coupled system allows us to built fixed-frequency
oscillators from NEMS resonators with randomly spread
frequencies.

3. Spectral sensing with coupled oscillator arrays

3.1. Inhibitory coupled oscillators

Convergence to the frequency sync (measured by the order
factor) in oscillator arrays with attractive coupling depends
mainly on the coupling strength. This phenomenon masks
external excitations and limits signal processing possibilities.
To make coupled oscillators to be more sensitive for
external excitations we suggest translating external signals into
coupling strength. However, before this mapping we need to
keep the system out of sync when no external signal is present.
It can be done by utilizing inhibitory (or repulsive) coupling,
preventing the system falling into a collective behavior. Then,
once the external excitation is above the inhibitory coupling, it
forces the system, proportional to the strength of the external
excitation, to move into more ordered behavior.

To analyze the mean-field behavior phase equations (4)
may be transformed into mean-field equations by multiply-
ing (3) by eiθm and summing over m, which for non-identical
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Figure 2. Dependence of averaged mean field 〈r(t)〉 from repulsive
coupling strength, k < 0.

frequencies finally gives [17]

Ṙ = 1

N

∑

n

ωneiθn + k

2

[

R − R∗ 1

N

∑

n

ei2θn

]

. (6)

For large N (in simulations for N > 4), the eigenvalues of
the synchronized solution are positive, hence the synchronized
solution is unstable.

In the case of identical oscillators (ωn = ω0) with
inhibitory global coupling the mean field approaches zero from
any initial condition at negative coupling strength k < 0.
The resulting phase distribution is not unique: there may
be multiple phase distributions among individual oscillators

subject to the constraint
∑

n eiθn = 0. It may be shown that
all these solutions are neutrally stable.

For oscillators with non-identical frequencies there are
multiple solutions for (6) and the mean field oscillates at small
values of inhibitory coupling: partial frequencies of oscillators
are preserved on average, while inhibitory coupling adjusts its
phases to minimize the mean field. In the limit N → ∞
it is shown that standard deviation of mean-field fluctuations
is proportional to N−1/2 [17]. As an example, figure 2
presents the averaged mean field as a function of repulsive
coupling strength. These curves are obtained by numerical
solution of (4) with frequency distribution g(ω) shown in
figure 1. Time evolution of randomly initialized frequencies for
globally repulsively coupled (k = −0.5) oscillators is shown
in figure 3(a). Note that the oscillators’ frequencies on average
are kept unchanged, but the increased repulsive coupling is
smoothing the discrete spectrum by affecting the oscillators’
phases and resulting in quasi-chaotic behavior.

3.2. Forced oscillations

Models for phase-coupled oscillators (1) may be extended to
include external field QF :

dθn

dt
= ωn + Qn(θ1, θ2, . . . , θN )+ QF (θ

ext
1 , θ ext

2 , . . . , θ ext
M );

n = 1, . . . , N; M � N, (7)

(a)

(c)

(b)

(d)
5

Figure 3. Time evolution of randomly initialized frequencies (
∑N

n=1 ωn = ω0 = 0) for globally repulsively coupled (k = −0.5) oscillators
without and with external periodic forcing Aext sin(ωextt), δω = ωext − ω0: (a) no forcing Aext = 0; (b) δω = 0.8, Aext = 1, quasi-chaotic
behavior; (c) δω = 0.3, partial sync; (d) δω = 0, frequency sync.
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Figure 4. Evolution of mean-field amplitude r(t) in time under
different time-periodic forcing Aext sin(ωextt),
δω = ωext − ω0 : Aext = 1, δω = 0.3, 0.8; N = 50.

where QF is a 2π -periodic function in all of its arguments.
Based on (3) we may write for time-periodic external forcing

dθn

dt
= ωn + kr sin(ψ − θn)+ qext

n sin(θ ext
n )

n = 1, . . . , N. (8)

The last term in (8) may be presented as An sin(θn − ωextt),
where An and ωext are the amplitude and frequency of the
external force. Introducing a new variable ϕn = θn − ωextt
we obtain again equation (8) for ϕn, but with other frequencies
ω̃n = ωn − ωext:

dϕn

dt
= ω̃n + kr sin(ψ − ϕn)+ An sin(φn − ϕn)

n = 1, . . . , N. (9)

In other words, time-periodic external forcing may be
presented as a modification of the distribution g(ω) of partial
frequencies in the oscillator array.

As an illustration, time evolution of frequencies of
inhibitory coupled oscillators under different periodic forcing
are depicted in figures 3(b)–(d). When the forcing frequency
ωext is approaching the average frequency of the oscillator
array, ω0 = ∑N

n=1 ωn = 0, the excitation strength An = Aext

overcomes the repulsive coupling k and the system evolves
from quasi-chaotic (figure 3(b)) to partial synchronization
(figure 3(c)), where oscillators with frequencies close to ωext

are attracted to the frequency lock, resulting in a growing order
factor 〈r(t)〉. Recall that for non-identical oscillators the mean
field is not constant. Evolution of mean-field amplitude r(t) in
time at different frequencies of periodic forcing ωext is depicted
in figure 4. As one may see the order factor 〈r(t)〉 depends on
the frequency of external forcing, we use this property in the
following for spectrum sensing.

In the general case the external field is described by
a probability density f (An, φn) and includes a white-noise
forcing term ξn . Then the resulting stochastic equations are

dϕn

dt
= ω̃n + kr sin(ψ − ϕn)+ An sin(φn − ϕn)+ ξn

n = 1, . . . , N (10)

where ξn is an independent stochastic process with expected
values 〈ξn(t)〉 = 0 and 〈ξn(s)ξm(t)〉 = 2Dδnmδ(s − t).

Besides external fields, time delays in interactions, e.g.
due to signal propagation through band-limited circuits, may
significantly change the system dynamics. To make the model
more realistic we also include time delays in coupling among
oscillators, τnm , into the resulting Langevin equations:

dϕn

dt
= ω̃n + k

N

N∑

m=1

sin(ϕm(t − τnm)− ϕn(t))

+ An sin(φn − ϕn)+ ξn . (11)

The attractive coupling attempts to force in phase all
oscillators whereas the frequency dispersion and the noise tend
to destroy coherence. For negatively coupled oscillators with
non-equal frequencies and external periodic forcing ωext =
ω0, there will be fluctuations of mean field at any value
of coupling. Oscillator phases and frequencies evolve from
chaotic to partially sync as the amplitude of external force is
increasing. Finally, a collective behavior may appear as a result
of competition between external forcing and desynchronizing
effects from inhibitory coupling, noise and partial frequencies
dispersion.

Instead of tracking phases of individual oscillators in
stochastic differential equations (11), it is convenient to
describe the system in terms of a density function ρ(ϕ, t)
in the limit of infinite number of oscillators N and consider
associated Fokker–Planck equations (FPE) (see appendix A).

Analyzing density functions we can observe that increas-
ing positive coupling above a critical coupling kc makes the
density function more picky, creating frequency synchroniza-
tion among non-identical oscillators and increasing mean field;
in the case of identical oscillators ρ approaches the delta func-
tion (phase synchronization). On the other hand, the repulsive
coupling tends to a flat density function and reinforces incoher-
ence even in the case of oscillators with identical frequencies.
It may be shown that the incoherence remains linearly stable
as long as k < kc. Structured external field then imposes a
regular behavior, reshapes the flat distribution and changes the
mean field according to applied forcing frequency and ampli-
tude. The presence of noise reduces the order parameter.

The FPE allows us to consider arbitrary external fields
in the limit N → ∞ (see appendix A). To evaluate finite-
N dynamics, we calculated solutions for inhibitory coupled
oscillators using FPE (A.7) and using (9)–(11) for cases with
periodic forcing. We found a good correspondence between
averaged mean fields in both cases. It allowed us to use FPE to
calculate order factors for finite numbers of oscillators in the
following.

Dependence of order factor from amplitude Aext of
external periodic forcing ωext = ω0 at different coupling
strength is shown in figure 5. As one can see, the order
factor 〈r〉 depends monotonically from the amplitude of the
external force at fixed coupling. This property may be used for
energy sensing of external signals addressed below. Figure 6
shows the order factor for global inhibitory coupled oscillators
(k = −1) with different amplitude–frequency characteristics
of forcing. Similar results are reported in [18].
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Figure 5. Order factor of coupled oscillators as a function of
coupling and the amplitude of forcing signal ωext = ω0.

Figure 6. Order factor of coupled oscillators (k = −1) as a function
of amplitude and frequency of forcing signal.

The order factor of coupled oscillators as a function of
frequency of the forcing signal with fixed amplitude Aext = 1
at different coupling levels is depicted in figure 7. As one
may see, by adjusting coupling strength it is possible to tune
the frequency bandwidth. It allows us to utilize amplitude–
frequency selectivity and its dependence on tuning and the
amplitude of external excitation for spectral sensing in radio
systems (e.g. cognitive radio). Figure 8 presents simulations
similar to figure 7, but with exponentially distributed random
delays (σ 2

τ = 0.5) in coupling. This figure shows that the
system is robust to time delays of the order ω−1

0 in coupling
and preserves filtering properties (cf figure 7), provided that
coupling remains repulsive. Note that ω0 = 0 in the figures
above is a free parameter; another value of ω0 results in
the corresponding shift along the frequency axis. Below we
outline a possible implementation of this kind of sensing with
nanoscale resonators.

Figure 7. Order factor of coupled oscillators as a function of
coupling and frequency of forcing signal, Aext = 1.

Figure 8. Order factor of coupled oscillators in presence of delays as
function of coupling and frequency of forcing signal, Aext = 1.

4. Nanoscale resonators for spectral sensing

4.1. General parameters of oscillator array

To implement the proposed scheme we need to map it onto
physical devices (e.g. NEMS arrays). From figure 7 one
may see that the best frequency selectivity is achieved when
repulsive coupling (k � −0.3, . . . ,−1) matches the amplitude
of external excitation (Aext = 1). This relation will be used
in the following. The number of oscillators N is the design
parameter and may be selected based on required accuracy and
sensitivity. For example, in the absence of external signals for
N = 50 oscillators with coupling k ∈ [−0.3,−1], mean-field
fluctuations are about 5% of the full scale (figure 2). One
may obtain the same dynamical range, 5%, with N = 10 at
k = −2 for a cost of lower frequency selectivity (cf figure 7);
functionality of the array degrades significantly for N < 10.

The next step is to outline general parameters of
oscillators. We model the oscillator as an active device with

5
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a negative resistor Ra embedded into the serial resonant circuit
with inductance L, resistor RL and capacitor C . The negative
resistance depends nonlinearly on the amplitude of oscillations
Ra = Ra(|V |). Under external forcing Vext the oscillator
dynamics is described by

dV

dt
+ ω2

0

∫

V dt + ω0

Q

(

1 − Ra

RL

)

V = ω0

2Q
Vext (12)

Vext = Aext(t)e
i(ωext t+φ(t)) = Aext(t)e

iθext(t) (13)

where V is complex (phasor) voltage and the embedded
passive network is characterized by a Q factor. At a sufficiently
high Q > 10, the output voltage is presented as V =
A(t)ei(ω0t+φ(t)) = A(t)eiθ(t). The saturation may be modeled
as 1− Ra/RL � μ(A0 −|V |2), where μ describes nonlinearity
and A0 = 1 is the amplitude of free-running oscillations with
frequency ω0. It allows us to present (12) as a complex form of
the forced Van der Pol oscillator (cf appendix B):

dV

dt
+ μω0

2Q
[(1 − |V |2)+ iω0] = ω0

2Q
Vext. (14)

Assuming a weak perturbation |Vext| 	 |V |, the oscillator
amplitude remains close to its limit cycle and the phase
dynamics is described by

dθ

dt
= ω0 + ω0

2Q
Im

(
Vext

V

)

= ω0 + ω0

2Q

Aext

A
sin(θext − θ). (15)

In a steady state the oscillator locks to the external excitation,
dθ/dt = ωext, and (15) takes the form ωext − ω0 =
ωlock sin(θ), where ωlock = ω0

2Q
Aext
A is the oscillator

locking bandwidth. Similarly, dynamics of N oscillators with
global coupling strength k̃ is presented by

dθn

dt
= ωn + k̃

ω0

2Q

N∑

m=1

Ãm

Ãn

sin(θm − θn). (16)

In the case of identical amplitudes, Ãn = A0, the frequency
synchronization of all oscillators, dθn/dt = ω0, takes place
provided attractive coupling k̃ > (Q/N)(ω/ω0), where
ω = ωmax − ωmin. In other words, in the locking
bandwidth (and hence the critical coupling strength) depends
on the resonator quality, oscillators’ amplitudes and applied
excitations. Now we can map abstract values of coupling k
used in the previous sections to physical parameters. As an
example, let’s consider N = 100 nanoresonators with Q ≈ 20
(as reported for CNT at room temperature) in the frequency
range ω = (1.1 − 0.9) GHz with average frequency ω0 =∑N

n=1 ωn/N = 1 GHz. The coupled array will be forced by
mutual entrainment to the average frequency ω0 provided that
more than 4% (k̃ > 0.04) of each oscillator energy is allocated
to the global coupling bath; it allows us to define parameters of
the coupling network.

In a similar way we may map values of repulsive coupling
shown in figures 5–8 into physical parameters. Recall that
the purpose of repulsive coupling is to prevent falling into
frequency synchronization in the absence of external signals,

i.e. Aext/A0 and k are scaled to the same factor. For example,
k = −1 was taken to prevent synchronization of all oscillators
under external forcing Aext/A0 < 1. In practice Aext 	 A0 and
coupling strength is scaled down accordingly (which is also
required for weak phase coupling assumption in (15)).

Global coupling may be implemented as a common load
similar to global coupling in Josephson junctions [19, 20].
In particular, we can obtain the mean field R(t) by adding
output currents and then reading off the feedback signal
from a resistor divider (or using a gain-controlled operational
amplifier, AO). Repulsive coupling may be implemented by
placing an AO invertor into the feedback loop.

4.2. Possible implementation

Resonant nanostructures have been addressed in a number
of papers. For example, parametric resonance in an
electrostatically driven nanowire is studied in [4], laser-driven
limit-cycle oscillators in NEMS resonators in different disc
shapes and wires are reported in [8], mechanically coupled
NEMS with resonant frequencies up to 18 MHz are presented
in [21]. Besides silicon-based NEMS, carbon nanotubes
(CNT) are currently under intensive studies because of their
superior mechanical properties, small cross sections and
possibility for defect-free self-assembling [3]. Additionally,
the CNT can act as a transistor, may be able to sense its own
motion and can be made CMOS compatible. Recently it is
shown that CNTs can be used as nanoswitches [5] and as GHz
oscillators [6, 7].

The proposed scheme is based on collective behavior of
coupled low-accuracy oscillators and may be implemented
with different technologies. Top-down fabricated beams [2]
may be used to build oscillator arrays operating at the MHz
range. Devices operating at higher frequencies (above 2 GHz)
may be implemented using self-assembling technologies [22].
As a not-limiting example, in the context of modern
communication systems at GHz range, we briefly outline a
possible implementation using low-accuracy CNT resonators
and preliminary estimate design parameters. More details on
this ongoing project will be reported elsewhere.

Let us consider a suspended CNT clamped on both sides
to metal pads (source and drain) and capacitively coupled to a
gate as reported in [9]: tunable CNT-based NEMS is depicted
at figure 9. Similar to MEMS, we may add a positive feedback
loop that converts drain output current into voltage (I/V block
at figure 9) which then is fed back to the gate to excite CNT
resonance modes. Provided a proper positive feedback this
structure may be used as a limit-cycle oscillator or rotator
(shown in the upper-right corner at figure 9). Another, probably
more appropriate, method to maintain GHz oscillations in
CNT-based NEMS is to use ac voltage V ac

g (ωpar ≈ 200–
300 MHz, Aac

g ≈ 100 mV) applied to the gate for parametric
excitation of CNT eigenmodes at GHz range. This method
could allow us to excite and maintain oscillations in the whole
array of resonators. Additionally, dc voltage Vg ≈ 2 V
applied to the gate would allow to change CNT strain and
hence to control the eigenmodes which may be excited by
external ac source V (ωext) [9]. The suspended nanotube

6
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V(ωpar)

V(ωpar)

Vg

Vg

+Vs

+V
NT device

NT device

Source

Gate

Drain

Rs Rd
LK

Cs Cg Cd

I/V

I/V

Control

Ctr

I(ωn)

ωn

Figure 9. Tunable CNT-based NEMS oscillator (cf [9]): (top) block diagram; (bottom) the equivalent circuit schematic: preliminary estimates
Rs = Rd ≈ 30 k�, Cg ≈ 10 aF, L K ∼ nH μm−1.

V(ωext)

V(ωpar)

Vg

ωn

ωn

ωn I(ωN)

I(ω2)

I(ω1)

-1

I/V

Control
V(r)

Figure 10. Array of oscillators with global coupling.

starts to oscillate when the driving frequency approaches CNT
mechanical eigenmodes.

One-dimensional motion of a nanotube can be described
by the Duffing equation [3]. It may be shown that, for small
displacements and weak interactions, globally coupled Duffing
oscillators may be described by (3) (see appendix B). Under
these assumptions we may consider a system of inhibitory
globally coupled oscillators shown in figure 10. Here current
outputs from oscillators I (ωn) are combined at a common
load followed by the feedback via current/voltage conversion
(I/V block at figure 10) creating global coupling. The amount
and sign of the feedback may be controlled by operational
amplifiers (OA) with tunable amplification, the estimated
feedback voltage Vfb ≈ 10 mV. The same OA is used to block
external signal leakage into the common load. In the absence of
external signals the global negative feedback is to be (digitally)

calibrated to prevent system convergence into frequency lock
and keep the order parameter close to zero. Another possible
way to implement feedback is to combine output voltage V (r)
after the I/V block with Vg which would allow us to modify
(according to the feedback) mechanical eigenfrequencies for
the whole bunch of nanotubes. Global coupling strength k
may be digitally controlled to tune the bandwidth of spectral
sensing (cf figure 7). CNT strain and its eigenmodes may be
tuned by changing dc voltage Vg (figure 9). Tuning voltage
gate Vg may be used to adjust the whole set of frequencies
� = {ω1, . . . , ωN } in a given oscillator array (figure 10).

Several oscillator arrays with different frequency sets
�n tuned by dc gate voltage Vg (to adjust frequency) and
coupling k (to adjust bandwidth) may be used to make coarse
spectral sensing as shown at figure 11. In particular, when
voltage V (r�n ) corresponding to order factor(s) r�n of

7
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Coarse Spectrum Sensing

RF 
input Oscillator array

Ω1

rΔΩN

rΔΩ1

E (rΔΩκ) < E0
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ΩN

K Vg

Digital Tuning

C
O
N
T
R
O
L

Fine Spectrum
Estimation

Frequency
Synthesizer

Feature 
Detector

Mixer ADC

Figure 11. Tunable coupled oscillator arrays for spectral sensing.

some frequency band(s) is below a threshold E0 (set by the
control block), it indicates potential spectrum holes. Then
control block sends information on a relevant frequency(s)
band�n to the frequency synthesizer which sets the relevant
local frequency for the mixer; at the same time the input RF
signal is connected to the mixer. After downconverting the
baseband signal in a selected (relatively narrow) frequency
band is digitized by ADC and then analyzed in the feature
detector. If needed the feature detector may refine frequency
and bandwidth of the oscillator array via feedback control.

5. Conclusions

In this paper we present the method of coarse spectral sensing
in analog domain using globally coupled limit-cycle oscillators
which may be made of imprecise nanoscale components such
as CNT-based NEMS or top-down fabricated beams. Provided
there is proper inhibitory coupling, the system’s collective
behavior (measured by order factor) becomes sensitive to
amplitude and frequency content of excitation and digital
control of coupling allows us to tune the spectral sensing
position and bandwidth. This method may be used in cognitive
radio terminals.

Appendix A

A convenient way to deal with a set of Langevin equations (10)
and (11) is to introduce a one-oscillator probability density
ρn(ϕ, t) � ρ(ϕ, t;ωn, φn) = 〈ϕ − ϕn〉 in the limit of a large
number of oscillators N → ∞ and to consider the associated
Fokker–Planck equations

∂ρn

∂ t
= − ∂

∂ϕ
(υnρn)+ D

∂2ρn

∂ t2
(A.1)

where ρn(ϕ, t) dϕ gives the probability that the oscillator with
frequencyωn under the action of φn stays between ϕ and ϕ+dϕ
at time t ;

∫ 2π
0 ρn(ϕ, ω, t) dϕ = 1; υn is a drift velocity term

(cf (4)):

υn = ϕ̇n = ωn + kr sin(ψ − ϕn)+ An sin(φn − ϕn). (A.2)

The first term on the left in (A.1) is Liouville’s continuity
condition which states a conservation law for oscillators: if the
density is increasing in a certain region there is a corresponding
flow into this region from other regions. Continuity condition
equations can be combined to obtain a single equation for ρ:

∂ρ

∂ t
= − ∂

∂ϕ

[

ρ

(

ω + k
∫ ∞

−∞
g(ω) dω

×
∫ 2π

0
sin(ϕ′ − ϕ)ρ(ϕ′, ω, t) dϕ′

)]

. (A.3)

The expression in parentheses above is υ(ϕ, ω, t) written as
the infinite-N version of (3). The last term in (A.1) is the
diffusive part spreading out phases of the oscillators.

The stationary solution of (A.1) should satisfy periodic
boundary conditions ρ(ϕ) = ρ(ϕ + 2π). The trivial solution
is ρ0 = (2π)−1 with order parameter r = 0, which represents
incoherence or unsynchronized motion of all oscillators. In the
absence of noise (D = 0) the condition ∂ρn/∂ t = 0 implies
that υnρn = Vn(ω, φ) is a constant w.r.t. ϕ and the solution
of (A.1) has a form ρn = Vn/υn , i.e.

ρn = Vn

ωn + kr sin(ψ − ϕn)+ An sin(φn − ϕn)
(A.4)

with normalization Vn = [∫ 2π
0 (υn(ϕ, ω, φ))

−1 dϕ]−1, where
υn is defined by (A.2). On the other hand, note that the mean
field (3) may be written as

R = reiψ =
∫ 2π

0
eiϕ

(
1

N

N∑

n=1

δ(ϕ − ϕn)

)

dϕ

= 1

N

N∑

n=1

∫ 2π

0
eiϕρn(ϕ) dϕ. (A.5)

In the limit N → ∞ and provided all oscillators are initially
independent, the mean field in (3) is obtained by averaging
over frequency distribution g(ω) and distribution f (φ) of the
driving phases:

reiψ =
∫ ∞

−∞
g(ω) dω

∫ 2π

0
f (φ) dφ

∫ 2π

0
ρ(ϕ, ω, φ)eiϕ dϕ.

(A.6)
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If D = 0 in (A.1), then ρ is given by (A.4) and (A.6) can be
written in the form

reiψ = 1

P

∫ ∞

−∞
g(ω) dω

∫ 2π

0
f (φ) dφ

∫ 2π

0

eiϕ

υ(ϕ, ω, φ)
dϕ

(A.7)
where normalization constant P = ∫ ∞

−∞ g(ω) dω
∫ 2π

0 f (φ) dφ
∫ 2π

0 (υ(ϕ, ω, φ))−1 dϕ.
Equation (A.7) provides the general solution for arbitrary

external fields in the absence of noise and may be solved
numerically using iterations. Calculations of the order
parameter in the presence of noise are more mathematically
involved and one may utilize the periodicity of the system and
expand the probability density in Fourier series [23] or apply a
specific generative functional as in [24].

Appendix B

Let us consider equations of one-dimensional motion of N-
coupled NEMS:

mẍn + ω2
n xn − μ(1 − x2

n)ẋn + k3x3
n

+
∑

m

hm(xn − xm, ẋn − ẋm) = 0. (B.1)

The first two terms describe uncoupled harmonic oscillators
with frequency ωn . The third term consists of negative
linear dumping μẋn representing an energy source to sustain
the oscillations and positive μx2

n ẋn dumping, such that
oscillations saturate at a limit cycle. The negative dumping
can be implemented with an electronic feedback loop sensing
oscillator velocity and driving the oscillator phase. The first
three terms typically are used to describe MEMS devices.
The term k3x3

n describes a spring stiffening (Kerr constant
k3 > 0) resulting in an amplitude-dependent shift of the
resonant frequency which is to be taken into account for NEMS
dynamics. The last term presents coupling via displacements
(xn − xm) typical for elastic or electrostatic interactions;
coupling via velocities (ẋn − ẋm) introduces dissipation and
is not considered here.

With the introduction of a complex variable z = ẋ + iωx
the dynamics of a single oscillator (evolution of its complex
state) may be presented as

ż = (c + iω)z + (a + ib)z|z|2 (B.2)

where a, b and c are parameters describing stiffness and
damping for an oscillating rod clamped on both sides [10].

Based on (B.2) the NEMS dynamics may be presented in
polar coordinates z = reiθ as ṙ = cr + ar 3; θ̇ = ω + br 2.
To get a stable frequency the automatic control level circuitry
is to be set such that b = 0. To simplify treatment, we may
normalize (B.2) with c = 1, a = −1. For weakly globally
coupled oscillators it gives

żn = i(ωn − b|zn|2)zn + (1 − |zn|2)zn

+ k + iβ

N

∑

m

(zm − zn) (B.3)

where b corresponds to nonlinear frequency pulling, k and
β are dissipative and reactive parts of all-to-all coupling,

respectively. In the case of only nonlinear saturation (b = 0)
and dissipative coupling (β = 0, k = 0) it results in a special
case of coupled Landau–Stuart equations [25]:

żn = (iωn + 1 − |zn|2)zn + k

N

N∑

m=1

(zm − zn). (B.4)

Let us define a complex-valued mean field as

z̄ = 1

N

N∑

m=1

zm = r eψ, (B.5)

then żn = (iωn+1−|zn|2)zn+k(z̄−zn), or in polar coordinates

ṙn = (1 − r 2
n − k)rn + kr cos(ψ − θn) (B.6)

θ̇n = ωn + (kr/rn) sin(ψ − θn). (B.7)

If coupling is weak (small k) and the width σω of frequency
distribution g(ω) is narrow enough, then rn rapidly relaxes to
a limit cycle with one variable phase θn for each array. As
the result, the equations are simplified to the Kuramoto model
described by (3).
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